Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 561, 810 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 561, 810 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 561, 810 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 561, 810 is 3.
HCF(561, 810) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 561, 810 is 3.
Step 1: Since 810 > 561, we apply the division lemma to 810 and 561, to get
810 = 561 x 1 + 249
Step 2: Since the reminder 561 ≠ 0, we apply division lemma to 249 and 561, to get
561 = 249 x 2 + 63
Step 3: We consider the new divisor 249 and the new remainder 63, and apply the division lemma to get
249 = 63 x 3 + 60
We consider the new divisor 63 and the new remainder 60,and apply the division lemma to get
63 = 60 x 1 + 3
We consider the new divisor 60 and the new remainder 3,and apply the division lemma to get
60 = 3 x 20 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 561 and 810 is 3
Notice that 3 = HCF(60,3) = HCF(63,60) = HCF(249,63) = HCF(561,249) = HCF(810,561) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 561, 810?
Answer: HCF of 561, 810 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 561, 810 using Euclid's Algorithm?
Answer: For arbitrary numbers 561, 810 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.