Highest Common Factor of 563, 816, 518, 13 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 563, 816, 518, 13 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 563, 816, 518, 13 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 563, 816, 518, 13 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 563, 816, 518, 13 is 1.

HCF(563, 816, 518, 13) = 1

HCF of 563, 816, 518, 13 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 563, 816, 518, 13 is 1.

Highest Common Factor of 563,816,518,13 using Euclid's algorithm

Highest Common Factor of 563,816,518,13 is 1

Step 1: Since 816 > 563, we apply the division lemma to 816 and 563, to get

816 = 563 x 1 + 253

Step 2: Since the reminder 563 ≠ 0, we apply division lemma to 253 and 563, to get

563 = 253 x 2 + 57

Step 3: We consider the new divisor 253 and the new remainder 57, and apply the division lemma to get

253 = 57 x 4 + 25

We consider the new divisor 57 and the new remainder 25,and apply the division lemma to get

57 = 25 x 2 + 7

We consider the new divisor 25 and the new remainder 7,and apply the division lemma to get

25 = 7 x 3 + 4

We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 563 and 816 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(25,7) = HCF(57,25) = HCF(253,57) = HCF(563,253) = HCF(816,563) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 518 > 1, we apply the division lemma to 518 and 1, to get

518 = 1 x 518 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 518 is 1

Notice that 1 = HCF(518,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 13 > 1, we apply the division lemma to 13 and 1, to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 13 is 1

Notice that 1 = HCF(13,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 563, 816, 518, 13 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 563, 816, 518, 13?

Answer: HCF of 563, 816, 518, 13 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 563, 816, 518, 13 using Euclid's Algorithm?

Answer: For arbitrary numbers 563, 816, 518, 13 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.