Highest Common Factor of 567, 114 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 567, 114 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 567, 114 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 567, 114 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 567, 114 is 3.

HCF(567, 114) = 3

HCF of 567, 114 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 567, 114 is 3.

Highest Common Factor of 567,114 using Euclid's algorithm

Highest Common Factor of 567,114 is 3

Step 1: Since 567 > 114, we apply the division lemma to 567 and 114, to get

567 = 114 x 4 + 111

Step 2: Since the reminder 114 ≠ 0, we apply division lemma to 111 and 114, to get

114 = 111 x 1 + 3

Step 3: We consider the new divisor 111 and the new remainder 3, and apply the division lemma to get

111 = 3 x 37 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 567 and 114 is 3

Notice that 3 = HCF(111,3) = HCF(114,111) = HCF(567,114) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 567, 114 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 567, 114?

Answer: HCF of 567, 114 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 567, 114 using Euclid's Algorithm?

Answer: For arbitrary numbers 567, 114 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.