Highest Common Factor of 567, 880, 814 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 567, 880, 814 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 567, 880, 814 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 567, 880, 814 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 567, 880, 814 is 1.

HCF(567, 880, 814) = 1

HCF of 567, 880, 814 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 567, 880, 814 is 1.

Highest Common Factor of 567,880,814 using Euclid's algorithm

Highest Common Factor of 567,880,814 is 1

Step 1: Since 880 > 567, we apply the division lemma to 880 and 567, to get

880 = 567 x 1 + 313

Step 2: Since the reminder 567 ≠ 0, we apply division lemma to 313 and 567, to get

567 = 313 x 1 + 254

Step 3: We consider the new divisor 313 and the new remainder 254, and apply the division lemma to get

313 = 254 x 1 + 59

We consider the new divisor 254 and the new remainder 59,and apply the division lemma to get

254 = 59 x 4 + 18

We consider the new divisor 59 and the new remainder 18,and apply the division lemma to get

59 = 18 x 3 + 5

We consider the new divisor 18 and the new remainder 5,and apply the division lemma to get

18 = 5 x 3 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 567 and 880 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(18,5) = HCF(59,18) = HCF(254,59) = HCF(313,254) = HCF(567,313) = HCF(880,567) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 814 > 1, we apply the division lemma to 814 and 1, to get

814 = 1 x 814 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 814 is 1

Notice that 1 = HCF(814,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 567, 880, 814 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 567, 880, 814?

Answer: HCF of 567, 880, 814 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 567, 880, 814 using Euclid's Algorithm?

Answer: For arbitrary numbers 567, 880, 814 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.