Highest Common Factor of 569, 225, 479, 87 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 569, 225, 479, 87 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 569, 225, 479, 87 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 569, 225, 479, 87 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 569, 225, 479, 87 is 1.

HCF(569, 225, 479, 87) = 1

HCF of 569, 225, 479, 87 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 569, 225, 479, 87 is 1.

Highest Common Factor of 569,225,479,87 using Euclid's algorithm

Highest Common Factor of 569,225,479,87 is 1

Step 1: Since 569 > 225, we apply the division lemma to 569 and 225, to get

569 = 225 x 2 + 119

Step 2: Since the reminder 225 ≠ 0, we apply division lemma to 119 and 225, to get

225 = 119 x 1 + 106

Step 3: We consider the new divisor 119 and the new remainder 106, and apply the division lemma to get

119 = 106 x 1 + 13

We consider the new divisor 106 and the new remainder 13,and apply the division lemma to get

106 = 13 x 8 + 2

We consider the new divisor 13 and the new remainder 2,and apply the division lemma to get

13 = 2 x 6 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 569 and 225 is 1

Notice that 1 = HCF(2,1) = HCF(13,2) = HCF(106,13) = HCF(119,106) = HCF(225,119) = HCF(569,225) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 479 > 1, we apply the division lemma to 479 and 1, to get

479 = 1 x 479 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 479 is 1

Notice that 1 = HCF(479,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 87 > 1, we apply the division lemma to 87 and 1, to get

87 = 1 x 87 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 87 is 1

Notice that 1 = HCF(87,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 569, 225, 479, 87 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 569, 225, 479, 87?

Answer: HCF of 569, 225, 479, 87 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 569, 225, 479, 87 using Euclid's Algorithm?

Answer: For arbitrary numbers 569, 225, 479, 87 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.