Highest Common Factor of 569, 940, 86 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 569, 940, 86 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 569, 940, 86 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 569, 940, 86 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 569, 940, 86 is 1.

HCF(569, 940, 86) = 1

HCF of 569, 940, 86 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 569, 940, 86 is 1.

Highest Common Factor of 569,940,86 using Euclid's algorithm

Highest Common Factor of 569,940,86 is 1

Step 1: Since 940 > 569, we apply the division lemma to 940 and 569, to get

940 = 569 x 1 + 371

Step 2: Since the reminder 569 ≠ 0, we apply division lemma to 371 and 569, to get

569 = 371 x 1 + 198

Step 3: We consider the new divisor 371 and the new remainder 198, and apply the division lemma to get

371 = 198 x 1 + 173

We consider the new divisor 198 and the new remainder 173,and apply the division lemma to get

198 = 173 x 1 + 25

We consider the new divisor 173 and the new remainder 25,and apply the division lemma to get

173 = 25 x 6 + 23

We consider the new divisor 25 and the new remainder 23,and apply the division lemma to get

25 = 23 x 1 + 2

We consider the new divisor 23 and the new remainder 2,and apply the division lemma to get

23 = 2 x 11 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 569 and 940 is 1

Notice that 1 = HCF(2,1) = HCF(23,2) = HCF(25,23) = HCF(173,25) = HCF(198,173) = HCF(371,198) = HCF(569,371) = HCF(940,569) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 86 > 1, we apply the division lemma to 86 and 1, to get

86 = 1 x 86 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 86 is 1

Notice that 1 = HCF(86,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 569, 940, 86 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 569, 940, 86?

Answer: HCF of 569, 940, 86 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 569, 940, 86 using Euclid's Algorithm?

Answer: For arbitrary numbers 569, 940, 86 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.