Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5696, 2057 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 5696, 2057 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 5696, 2057 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 5696, 2057 is 1.
HCF(5696, 2057) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 5696, 2057 is 1.
Step 1: Since 5696 > 2057, we apply the division lemma to 5696 and 2057, to get
5696 = 2057 x 2 + 1582
Step 2: Since the reminder 2057 ≠ 0, we apply division lemma to 1582 and 2057, to get
2057 = 1582 x 1 + 475
Step 3: We consider the new divisor 1582 and the new remainder 475, and apply the division lemma to get
1582 = 475 x 3 + 157
We consider the new divisor 475 and the new remainder 157,and apply the division lemma to get
475 = 157 x 3 + 4
We consider the new divisor 157 and the new remainder 4,and apply the division lemma to get
157 = 4 x 39 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5696 and 2057 is 1
Notice that 1 = HCF(4,1) = HCF(157,4) = HCF(475,157) = HCF(1582,475) = HCF(2057,1582) = HCF(5696,2057) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 5696, 2057?
Answer: HCF of 5696, 2057 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 5696, 2057 using Euclid's Algorithm?
Answer: For arbitrary numbers 5696, 2057 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.