Highest Common Factor of 571, 2146 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 571, 2146 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 571, 2146 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 571, 2146 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 571, 2146 is 1.

HCF(571, 2146) = 1

HCF of 571, 2146 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 571, 2146 is 1.

Highest Common Factor of 571,2146 using Euclid's algorithm

Highest Common Factor of 571,2146 is 1

Step 1: Since 2146 > 571, we apply the division lemma to 2146 and 571, to get

2146 = 571 x 3 + 433

Step 2: Since the reminder 571 ≠ 0, we apply division lemma to 433 and 571, to get

571 = 433 x 1 + 138

Step 3: We consider the new divisor 433 and the new remainder 138, and apply the division lemma to get

433 = 138 x 3 + 19

We consider the new divisor 138 and the new remainder 19,and apply the division lemma to get

138 = 19 x 7 + 5

We consider the new divisor 19 and the new remainder 5,and apply the division lemma to get

19 = 5 x 3 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 571 and 2146 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(19,5) = HCF(138,19) = HCF(433,138) = HCF(571,433) = HCF(2146,571) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 571, 2146 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 571, 2146?

Answer: HCF of 571, 2146 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 571, 2146 using Euclid's Algorithm?

Answer: For arbitrary numbers 571, 2146 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.