Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 571, 439, 366, 195 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 571, 439, 366, 195 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 571, 439, 366, 195 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 571, 439, 366, 195 is 1.
HCF(571, 439, 366, 195) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 571, 439, 366, 195 is 1.
Step 1: Since 571 > 439, we apply the division lemma to 571 and 439, to get
571 = 439 x 1 + 132
Step 2: Since the reminder 439 ≠ 0, we apply division lemma to 132 and 439, to get
439 = 132 x 3 + 43
Step 3: We consider the new divisor 132 and the new remainder 43, and apply the division lemma to get
132 = 43 x 3 + 3
We consider the new divisor 43 and the new remainder 3,and apply the division lemma to get
43 = 3 x 14 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 571 and 439 is 1
Notice that 1 = HCF(3,1) = HCF(43,3) = HCF(132,43) = HCF(439,132) = HCF(571,439) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 366 > 1, we apply the division lemma to 366 and 1, to get
366 = 1 x 366 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 366 is 1
Notice that 1 = HCF(366,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 195 > 1, we apply the division lemma to 195 and 1, to get
195 = 1 x 195 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 195 is 1
Notice that 1 = HCF(195,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 571, 439, 366, 195?
Answer: HCF of 571, 439, 366, 195 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 571, 439, 366, 195 using Euclid's Algorithm?
Answer: For arbitrary numbers 571, 439, 366, 195 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.