Highest Common Factor of 572, 947 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 572, 947 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 572, 947 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 572, 947 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 572, 947 is 1.

HCF(572, 947) = 1

HCF of 572, 947 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 572, 947 is 1.

Highest Common Factor of 572,947 using Euclid's algorithm

Highest Common Factor of 572,947 is 1

Step 1: Since 947 > 572, we apply the division lemma to 947 and 572, to get

947 = 572 x 1 + 375

Step 2: Since the reminder 572 ≠ 0, we apply division lemma to 375 and 572, to get

572 = 375 x 1 + 197

Step 3: We consider the new divisor 375 and the new remainder 197, and apply the division lemma to get

375 = 197 x 1 + 178

We consider the new divisor 197 and the new remainder 178,and apply the division lemma to get

197 = 178 x 1 + 19

We consider the new divisor 178 and the new remainder 19,and apply the division lemma to get

178 = 19 x 9 + 7

We consider the new divisor 19 and the new remainder 7,and apply the division lemma to get

19 = 7 x 2 + 5

We consider the new divisor 7 and the new remainder 5,and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 572 and 947 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(19,7) = HCF(178,19) = HCF(197,178) = HCF(375,197) = HCF(572,375) = HCF(947,572) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 572, 947 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 572, 947?

Answer: HCF of 572, 947 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 572, 947 using Euclid's Algorithm?

Answer: For arbitrary numbers 572, 947 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.