Highest Common Factor of 573, 394, 396 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 573, 394, 396 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 573, 394, 396 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 573, 394, 396 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 573, 394, 396 is 1.

HCF(573, 394, 396) = 1

HCF of 573, 394, 396 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 573, 394, 396 is 1.

Highest Common Factor of 573,394,396 using Euclid's algorithm

Highest Common Factor of 573,394,396 is 1

Step 1: Since 573 > 394, we apply the division lemma to 573 and 394, to get

573 = 394 x 1 + 179

Step 2: Since the reminder 394 ≠ 0, we apply division lemma to 179 and 394, to get

394 = 179 x 2 + 36

Step 3: We consider the new divisor 179 and the new remainder 36, and apply the division lemma to get

179 = 36 x 4 + 35

We consider the new divisor 36 and the new remainder 35,and apply the division lemma to get

36 = 35 x 1 + 1

We consider the new divisor 35 and the new remainder 1,and apply the division lemma to get

35 = 1 x 35 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 573 and 394 is 1

Notice that 1 = HCF(35,1) = HCF(36,35) = HCF(179,36) = HCF(394,179) = HCF(573,394) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 396 > 1, we apply the division lemma to 396 and 1, to get

396 = 1 x 396 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 396 is 1

Notice that 1 = HCF(396,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 573, 394, 396 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 573, 394, 396?

Answer: HCF of 573, 394, 396 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 573, 394, 396 using Euclid's Algorithm?

Answer: For arbitrary numbers 573, 394, 396 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.