Highest Common Factor of 575, 5082 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 575, 5082 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 575, 5082 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 575, 5082 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 575, 5082 is 1.

HCF(575, 5082) = 1

HCF of 575, 5082 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 575, 5082 is 1.

Highest Common Factor of 575,5082 using Euclid's algorithm

Highest Common Factor of 575,5082 is 1

Step 1: Since 5082 > 575, we apply the division lemma to 5082 and 575, to get

5082 = 575 x 8 + 482

Step 2: Since the reminder 575 ≠ 0, we apply division lemma to 482 and 575, to get

575 = 482 x 1 + 93

Step 3: We consider the new divisor 482 and the new remainder 93, and apply the division lemma to get

482 = 93 x 5 + 17

We consider the new divisor 93 and the new remainder 17,and apply the division lemma to get

93 = 17 x 5 + 8

We consider the new divisor 17 and the new remainder 8,and apply the division lemma to get

17 = 8 x 2 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 575 and 5082 is 1

Notice that 1 = HCF(8,1) = HCF(17,8) = HCF(93,17) = HCF(482,93) = HCF(575,482) = HCF(5082,575) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 575, 5082 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 575, 5082?

Answer: HCF of 575, 5082 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 575, 5082 using Euclid's Algorithm?

Answer: For arbitrary numbers 575, 5082 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.