Highest Common Factor of 575, 635, 690, 315 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 575, 635, 690, 315 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 575, 635, 690, 315 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 575, 635, 690, 315 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 575, 635, 690, 315 is 5.

HCF(575, 635, 690, 315) = 5

HCF of 575, 635, 690, 315 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 575, 635, 690, 315 is 5.

Highest Common Factor of 575,635,690,315 using Euclid's algorithm

Highest Common Factor of 575,635,690,315 is 5

Step 1: Since 635 > 575, we apply the division lemma to 635 and 575, to get

635 = 575 x 1 + 60

Step 2: Since the reminder 575 ≠ 0, we apply division lemma to 60 and 575, to get

575 = 60 x 9 + 35

Step 3: We consider the new divisor 60 and the new remainder 35, and apply the division lemma to get

60 = 35 x 1 + 25

We consider the new divisor 35 and the new remainder 25,and apply the division lemma to get

35 = 25 x 1 + 10

We consider the new divisor 25 and the new remainder 10,and apply the division lemma to get

25 = 10 x 2 + 5

We consider the new divisor 10 and the new remainder 5,and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 575 and 635 is 5

Notice that 5 = HCF(10,5) = HCF(25,10) = HCF(35,25) = HCF(60,35) = HCF(575,60) = HCF(635,575) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 690 > 5, we apply the division lemma to 690 and 5, to get

690 = 5 x 138 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 5 and 690 is 5

Notice that 5 = HCF(690,5) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 315 > 5, we apply the division lemma to 315 and 5, to get

315 = 5 x 63 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 5 and 315 is 5

Notice that 5 = HCF(315,5) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 575, 635, 690, 315 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 575, 635, 690, 315?

Answer: HCF of 575, 635, 690, 315 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 575, 635, 690, 315 using Euclid's Algorithm?

Answer: For arbitrary numbers 575, 635, 690, 315 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.