Highest Common Factor of 5751, 1182 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5751, 1182 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 5751, 1182 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5751, 1182 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5751, 1182 is 3.

HCF(5751, 1182) = 3

HCF of 5751, 1182 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5751, 1182 is 3.

Highest Common Factor of 5751,1182 using Euclid's algorithm

Highest Common Factor of 5751,1182 is 3

Step 1: Since 5751 > 1182, we apply the division lemma to 5751 and 1182, to get

5751 = 1182 x 4 + 1023

Step 2: Since the reminder 1182 ≠ 0, we apply division lemma to 1023 and 1182, to get

1182 = 1023 x 1 + 159

Step 3: We consider the new divisor 1023 and the new remainder 159, and apply the division lemma to get

1023 = 159 x 6 + 69

We consider the new divisor 159 and the new remainder 69,and apply the division lemma to get

159 = 69 x 2 + 21

We consider the new divisor 69 and the new remainder 21,and apply the division lemma to get

69 = 21 x 3 + 6

We consider the new divisor 21 and the new remainder 6,and apply the division lemma to get

21 = 6 x 3 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 5751 and 1182 is 3

Notice that 3 = HCF(6,3) = HCF(21,6) = HCF(69,21) = HCF(159,69) = HCF(1023,159) = HCF(1182,1023) = HCF(5751,1182) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5751, 1182 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5751, 1182?

Answer: HCF of 5751, 1182 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5751, 1182 using Euclid's Algorithm?

Answer: For arbitrary numbers 5751, 1182 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.