Highest Common Factor of 577, 2675 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 577, 2675 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 577, 2675 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 577, 2675 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 577, 2675 is 1.

HCF(577, 2675) = 1

HCF of 577, 2675 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 577, 2675 is 1.

Highest Common Factor of 577,2675 using Euclid's algorithm

Highest Common Factor of 577,2675 is 1

Step 1: Since 2675 > 577, we apply the division lemma to 2675 and 577, to get

2675 = 577 x 4 + 367

Step 2: Since the reminder 577 ≠ 0, we apply division lemma to 367 and 577, to get

577 = 367 x 1 + 210

Step 3: We consider the new divisor 367 and the new remainder 210, and apply the division lemma to get

367 = 210 x 1 + 157

We consider the new divisor 210 and the new remainder 157,and apply the division lemma to get

210 = 157 x 1 + 53

We consider the new divisor 157 and the new remainder 53,and apply the division lemma to get

157 = 53 x 2 + 51

We consider the new divisor 53 and the new remainder 51,and apply the division lemma to get

53 = 51 x 1 + 2

We consider the new divisor 51 and the new remainder 2,and apply the division lemma to get

51 = 2 x 25 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 577 and 2675 is 1

Notice that 1 = HCF(2,1) = HCF(51,2) = HCF(53,51) = HCF(157,53) = HCF(210,157) = HCF(367,210) = HCF(577,367) = HCF(2675,577) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 577, 2675 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 577, 2675?

Answer: HCF of 577, 2675 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 577, 2675 using Euclid's Algorithm?

Answer: For arbitrary numbers 577, 2675 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.