Highest Common Factor of 578, 26988 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 578, 26988 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 578, 26988 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 578, 26988 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 578, 26988 is 2.

HCF(578, 26988) = 2

HCF of 578, 26988 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 578, 26988 is 2.

Highest Common Factor of 578,26988 using Euclid's algorithm

Highest Common Factor of 578,26988 is 2

Step 1: Since 26988 > 578, we apply the division lemma to 26988 and 578, to get

26988 = 578 x 46 + 400

Step 2: Since the reminder 578 ≠ 0, we apply division lemma to 400 and 578, to get

578 = 400 x 1 + 178

Step 3: We consider the new divisor 400 and the new remainder 178, and apply the division lemma to get

400 = 178 x 2 + 44

We consider the new divisor 178 and the new remainder 44,and apply the division lemma to get

178 = 44 x 4 + 2

We consider the new divisor 44 and the new remainder 2,and apply the division lemma to get

44 = 2 x 22 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 578 and 26988 is 2

Notice that 2 = HCF(44,2) = HCF(178,44) = HCF(400,178) = HCF(578,400) = HCF(26988,578) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 578, 26988 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 578, 26988?

Answer: HCF of 578, 26988 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 578, 26988 using Euclid's Algorithm?

Answer: For arbitrary numbers 578, 26988 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.