Highest Common Factor of 5785, 4977 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5785, 4977 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5785, 4977 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5785, 4977 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5785, 4977 is 1.

HCF(5785, 4977) = 1

HCF of 5785, 4977 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5785, 4977 is 1.

Highest Common Factor of 5785,4977 using Euclid's algorithm

Highest Common Factor of 5785,4977 is 1

Step 1: Since 5785 > 4977, we apply the division lemma to 5785 and 4977, to get

5785 = 4977 x 1 + 808

Step 2: Since the reminder 4977 ≠ 0, we apply division lemma to 808 and 4977, to get

4977 = 808 x 6 + 129

Step 3: We consider the new divisor 808 and the new remainder 129, and apply the division lemma to get

808 = 129 x 6 + 34

We consider the new divisor 129 and the new remainder 34,and apply the division lemma to get

129 = 34 x 3 + 27

We consider the new divisor 34 and the new remainder 27,and apply the division lemma to get

34 = 27 x 1 + 7

We consider the new divisor 27 and the new remainder 7,and apply the division lemma to get

27 = 7 x 3 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5785 and 4977 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(27,7) = HCF(34,27) = HCF(129,34) = HCF(808,129) = HCF(4977,808) = HCF(5785,4977) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5785, 4977 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5785, 4977?

Answer: HCF of 5785, 4977 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5785, 4977 using Euclid's Algorithm?

Answer: For arbitrary numbers 5785, 4977 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.