Highest Common Factor of 579, 952, 55 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 579, 952, 55 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 579, 952, 55 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 579, 952, 55 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 579, 952, 55 is 1.

HCF(579, 952, 55) = 1

HCF of 579, 952, 55 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 579, 952, 55 is 1.

Highest Common Factor of 579,952,55 using Euclid's algorithm

Highest Common Factor of 579,952,55 is 1

Step 1: Since 952 > 579, we apply the division lemma to 952 and 579, to get

952 = 579 x 1 + 373

Step 2: Since the reminder 579 ≠ 0, we apply division lemma to 373 and 579, to get

579 = 373 x 1 + 206

Step 3: We consider the new divisor 373 and the new remainder 206, and apply the division lemma to get

373 = 206 x 1 + 167

We consider the new divisor 206 and the new remainder 167,and apply the division lemma to get

206 = 167 x 1 + 39

We consider the new divisor 167 and the new remainder 39,and apply the division lemma to get

167 = 39 x 4 + 11

We consider the new divisor 39 and the new remainder 11,and apply the division lemma to get

39 = 11 x 3 + 6

We consider the new divisor 11 and the new remainder 6,and apply the division lemma to get

11 = 6 x 1 + 5

We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 579 and 952 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(11,6) = HCF(39,11) = HCF(167,39) = HCF(206,167) = HCF(373,206) = HCF(579,373) = HCF(952,579) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 55 > 1, we apply the division lemma to 55 and 1, to get

55 = 1 x 55 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 55 is 1

Notice that 1 = HCF(55,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 579, 952, 55 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 579, 952, 55?

Answer: HCF of 579, 952, 55 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 579, 952, 55 using Euclid's Algorithm?

Answer: For arbitrary numbers 579, 952, 55 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.