Highest Common Factor of 5792, 8795 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5792, 8795 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5792, 8795 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5792, 8795 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5792, 8795 is 1.

HCF(5792, 8795) = 1

HCF of 5792, 8795 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5792, 8795 is 1.

Highest Common Factor of 5792,8795 using Euclid's algorithm

Highest Common Factor of 5792,8795 is 1

Step 1: Since 8795 > 5792, we apply the division lemma to 8795 and 5792, to get

8795 = 5792 x 1 + 3003

Step 2: Since the reminder 5792 ≠ 0, we apply division lemma to 3003 and 5792, to get

5792 = 3003 x 1 + 2789

Step 3: We consider the new divisor 3003 and the new remainder 2789, and apply the division lemma to get

3003 = 2789 x 1 + 214

We consider the new divisor 2789 and the new remainder 214,and apply the division lemma to get

2789 = 214 x 13 + 7

We consider the new divisor 214 and the new remainder 7,and apply the division lemma to get

214 = 7 x 30 + 4

We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5792 and 8795 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(214,7) = HCF(2789,214) = HCF(3003,2789) = HCF(5792,3003) = HCF(8795,5792) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5792, 8795 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5792, 8795?

Answer: HCF of 5792, 8795 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5792, 8795 using Euclid's Algorithm?

Answer: For arbitrary numbers 5792, 8795 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.