Highest Common Factor of 580, 990, 982 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 580, 990, 982 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 580, 990, 982 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 580, 990, 982 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 580, 990, 982 is 2.

HCF(580, 990, 982) = 2

HCF of 580, 990, 982 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 580, 990, 982 is 2.

Highest Common Factor of 580,990,982 using Euclid's algorithm

Highest Common Factor of 580,990,982 is 2

Step 1: Since 990 > 580, we apply the division lemma to 990 and 580, to get

990 = 580 x 1 + 410

Step 2: Since the reminder 580 ≠ 0, we apply division lemma to 410 and 580, to get

580 = 410 x 1 + 170

Step 3: We consider the new divisor 410 and the new remainder 170, and apply the division lemma to get

410 = 170 x 2 + 70

We consider the new divisor 170 and the new remainder 70,and apply the division lemma to get

170 = 70 x 2 + 30

We consider the new divisor 70 and the new remainder 30,and apply the division lemma to get

70 = 30 x 2 + 10

We consider the new divisor 30 and the new remainder 10,and apply the division lemma to get

30 = 10 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 10, the HCF of 580 and 990 is 10

Notice that 10 = HCF(30,10) = HCF(70,30) = HCF(170,70) = HCF(410,170) = HCF(580,410) = HCF(990,580) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 982 > 10, we apply the division lemma to 982 and 10, to get

982 = 10 x 98 + 2

Step 2: Since the reminder 10 ≠ 0, we apply division lemma to 2 and 10, to get

10 = 2 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 10 and 982 is 2

Notice that 2 = HCF(10,2) = HCF(982,10) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 580, 990, 982 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 580, 990, 982?

Answer: HCF of 580, 990, 982 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 580, 990, 982 using Euclid's Algorithm?

Answer: For arbitrary numbers 580, 990, 982 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.