Highest Common Factor of 583, 884, 384, 380 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 583, 884, 384, 380 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 583, 884, 384, 380 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 583, 884, 384, 380 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 583, 884, 384, 380 is 1.

HCF(583, 884, 384, 380) = 1

HCF of 583, 884, 384, 380 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 583, 884, 384, 380 is 1.

Highest Common Factor of 583,884,384,380 using Euclid's algorithm

Highest Common Factor of 583,884,384,380 is 1

Step 1: Since 884 > 583, we apply the division lemma to 884 and 583, to get

884 = 583 x 1 + 301

Step 2: Since the reminder 583 ≠ 0, we apply division lemma to 301 and 583, to get

583 = 301 x 1 + 282

Step 3: We consider the new divisor 301 and the new remainder 282, and apply the division lemma to get

301 = 282 x 1 + 19

We consider the new divisor 282 and the new remainder 19,and apply the division lemma to get

282 = 19 x 14 + 16

We consider the new divisor 19 and the new remainder 16,and apply the division lemma to get

19 = 16 x 1 + 3

We consider the new divisor 16 and the new remainder 3,and apply the division lemma to get

16 = 3 x 5 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 583 and 884 is 1

Notice that 1 = HCF(3,1) = HCF(16,3) = HCF(19,16) = HCF(282,19) = HCF(301,282) = HCF(583,301) = HCF(884,583) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 384 > 1, we apply the division lemma to 384 and 1, to get

384 = 1 x 384 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 384 is 1

Notice that 1 = HCF(384,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 380 > 1, we apply the division lemma to 380 and 1, to get

380 = 1 x 380 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 380 is 1

Notice that 1 = HCF(380,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 583, 884, 384, 380 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 583, 884, 384, 380?

Answer: HCF of 583, 884, 384, 380 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 583, 884, 384, 380 using Euclid's Algorithm?

Answer: For arbitrary numbers 583, 884, 384, 380 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.