Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5851, 5961 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 5851, 5961 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 5851, 5961 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 5851, 5961 is 1.
HCF(5851, 5961) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 5851, 5961 is 1.
Step 1: Since 5961 > 5851, we apply the division lemma to 5961 and 5851, to get
5961 = 5851 x 1 + 110
Step 2: Since the reminder 5851 ≠ 0, we apply division lemma to 110 and 5851, to get
5851 = 110 x 53 + 21
Step 3: We consider the new divisor 110 and the new remainder 21, and apply the division lemma to get
110 = 21 x 5 + 5
We consider the new divisor 21 and the new remainder 5,and apply the division lemma to get
21 = 5 x 4 + 1
We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get
5 = 1 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5851 and 5961 is 1
Notice that 1 = HCF(5,1) = HCF(21,5) = HCF(110,21) = HCF(5851,110) = HCF(5961,5851) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 5851, 5961?
Answer: HCF of 5851, 5961 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 5851, 5961 using Euclid's Algorithm?
Answer: For arbitrary numbers 5851, 5961 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.