Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 587, 997, 148, 175 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 587, 997, 148, 175 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 587, 997, 148, 175 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 587, 997, 148, 175 is 1.
HCF(587, 997, 148, 175) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 587, 997, 148, 175 is 1.
Step 1: Since 997 > 587, we apply the division lemma to 997 and 587, to get
997 = 587 x 1 + 410
Step 2: Since the reminder 587 ≠ 0, we apply division lemma to 410 and 587, to get
587 = 410 x 1 + 177
Step 3: We consider the new divisor 410 and the new remainder 177, and apply the division lemma to get
410 = 177 x 2 + 56
We consider the new divisor 177 and the new remainder 56,and apply the division lemma to get
177 = 56 x 3 + 9
We consider the new divisor 56 and the new remainder 9,and apply the division lemma to get
56 = 9 x 6 + 2
We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get
9 = 2 x 4 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 587 and 997 is 1
Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(56,9) = HCF(177,56) = HCF(410,177) = HCF(587,410) = HCF(997,587) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 148 > 1, we apply the division lemma to 148 and 1, to get
148 = 1 x 148 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 148 is 1
Notice that 1 = HCF(148,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 175 > 1, we apply the division lemma to 175 and 1, to get
175 = 1 x 175 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 175 is 1
Notice that 1 = HCF(175,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 587, 997, 148, 175?
Answer: HCF of 587, 997, 148, 175 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 587, 997, 148, 175 using Euclid's Algorithm?
Answer: For arbitrary numbers 587, 997, 148, 175 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.