Highest Common Factor of 5870, 3125 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5870, 3125 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 5870, 3125 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5870, 3125 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5870, 3125 is 5.

HCF(5870, 3125) = 5

HCF of 5870, 3125 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5870, 3125 is 5.

Highest Common Factor of 5870,3125 using Euclid's algorithm

Highest Common Factor of 5870,3125 is 5

Step 1: Since 5870 > 3125, we apply the division lemma to 5870 and 3125, to get

5870 = 3125 x 1 + 2745

Step 2: Since the reminder 3125 ≠ 0, we apply division lemma to 2745 and 3125, to get

3125 = 2745 x 1 + 380

Step 3: We consider the new divisor 2745 and the new remainder 380, and apply the division lemma to get

2745 = 380 x 7 + 85

We consider the new divisor 380 and the new remainder 85,and apply the division lemma to get

380 = 85 x 4 + 40

We consider the new divisor 85 and the new remainder 40,and apply the division lemma to get

85 = 40 x 2 + 5

We consider the new divisor 40 and the new remainder 5,and apply the division lemma to get

40 = 5 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 5870 and 3125 is 5

Notice that 5 = HCF(40,5) = HCF(85,40) = HCF(380,85) = HCF(2745,380) = HCF(3125,2745) = HCF(5870,3125) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5870, 3125 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5870, 3125?

Answer: HCF of 5870, 3125 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5870, 3125 using Euclid's Algorithm?

Answer: For arbitrary numbers 5870, 3125 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.