Highest Common Factor of 588, 480, 341, 27 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 588, 480, 341, 27 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 588, 480, 341, 27 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 588, 480, 341, 27 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 588, 480, 341, 27 is 1.

HCF(588, 480, 341, 27) = 1

HCF of 588, 480, 341, 27 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 588, 480, 341, 27 is 1.

Highest Common Factor of 588,480,341,27 using Euclid's algorithm

Highest Common Factor of 588,480,341,27 is 1

Step 1: Since 588 > 480, we apply the division lemma to 588 and 480, to get

588 = 480 x 1 + 108

Step 2: Since the reminder 480 ≠ 0, we apply division lemma to 108 and 480, to get

480 = 108 x 4 + 48

Step 3: We consider the new divisor 108 and the new remainder 48, and apply the division lemma to get

108 = 48 x 2 + 12

We consider the new divisor 48 and the new remainder 12, and apply the division lemma to get

48 = 12 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 12, the HCF of 588 and 480 is 12

Notice that 12 = HCF(48,12) = HCF(108,48) = HCF(480,108) = HCF(588,480) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 341 > 12, we apply the division lemma to 341 and 12, to get

341 = 12 x 28 + 5

Step 2: Since the reminder 12 ≠ 0, we apply division lemma to 5 and 12, to get

12 = 5 x 2 + 2

Step 3: We consider the new divisor 5 and the new remainder 2, and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 12 and 341 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(341,12) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 27 > 1, we apply the division lemma to 27 and 1, to get

27 = 1 x 27 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 27 is 1

Notice that 1 = HCF(27,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 588, 480, 341, 27 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 588, 480, 341, 27?

Answer: HCF of 588, 480, 341, 27 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 588, 480, 341, 27 using Euclid's Algorithm?

Answer: For arbitrary numbers 588, 480, 341, 27 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.