Highest Common Factor of 5900, 4749 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5900, 4749 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5900, 4749 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5900, 4749 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5900, 4749 is 1.

HCF(5900, 4749) = 1

HCF of 5900, 4749 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5900, 4749 is 1.

Highest Common Factor of 5900,4749 using Euclid's algorithm

Highest Common Factor of 5900,4749 is 1

Step 1: Since 5900 > 4749, we apply the division lemma to 5900 and 4749, to get

5900 = 4749 x 1 + 1151

Step 2: Since the reminder 4749 ≠ 0, we apply division lemma to 1151 and 4749, to get

4749 = 1151 x 4 + 145

Step 3: We consider the new divisor 1151 and the new remainder 145, and apply the division lemma to get

1151 = 145 x 7 + 136

We consider the new divisor 145 and the new remainder 136,and apply the division lemma to get

145 = 136 x 1 + 9

We consider the new divisor 136 and the new remainder 9,and apply the division lemma to get

136 = 9 x 15 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5900 and 4749 is 1

Notice that 1 = HCF(9,1) = HCF(136,9) = HCF(145,136) = HCF(1151,145) = HCF(4749,1151) = HCF(5900,4749) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5900, 4749 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5900, 4749?

Answer: HCF of 5900, 4749 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5900, 4749 using Euclid's Algorithm?

Answer: For arbitrary numbers 5900, 4749 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.