Highest Common Factor of 5907, 7436 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5907, 7436 i.e. 11 the largest integer that leaves a remainder zero for all numbers.

HCF of 5907, 7436 is 11 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5907, 7436 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5907, 7436 is 11.

HCF(5907, 7436) = 11

HCF of 5907, 7436 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5907, 7436 is 11.

Highest Common Factor of 5907,7436 using Euclid's algorithm

Highest Common Factor of 5907,7436 is 11

Step 1: Since 7436 > 5907, we apply the division lemma to 7436 and 5907, to get

7436 = 5907 x 1 + 1529

Step 2: Since the reminder 5907 ≠ 0, we apply division lemma to 1529 and 5907, to get

5907 = 1529 x 3 + 1320

Step 3: We consider the new divisor 1529 and the new remainder 1320, and apply the division lemma to get

1529 = 1320 x 1 + 209

We consider the new divisor 1320 and the new remainder 209,and apply the division lemma to get

1320 = 209 x 6 + 66

We consider the new divisor 209 and the new remainder 66,and apply the division lemma to get

209 = 66 x 3 + 11

We consider the new divisor 66 and the new remainder 11,and apply the division lemma to get

66 = 11 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 11, the HCF of 5907 and 7436 is 11

Notice that 11 = HCF(66,11) = HCF(209,66) = HCF(1320,209) = HCF(1529,1320) = HCF(5907,1529) = HCF(7436,5907) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5907, 7436 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5907, 7436?

Answer: HCF of 5907, 7436 is 11 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5907, 7436 using Euclid's Algorithm?

Answer: For arbitrary numbers 5907, 7436 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.