Highest Common Factor of 5924, 9171 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5924, 9171 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5924, 9171 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5924, 9171 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5924, 9171 is 1.

HCF(5924, 9171) = 1

HCF of 5924, 9171 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5924, 9171 is 1.

Highest Common Factor of 5924,9171 using Euclid's algorithm

Highest Common Factor of 5924,9171 is 1

Step 1: Since 9171 > 5924, we apply the division lemma to 9171 and 5924, to get

9171 = 5924 x 1 + 3247

Step 2: Since the reminder 5924 ≠ 0, we apply division lemma to 3247 and 5924, to get

5924 = 3247 x 1 + 2677

Step 3: We consider the new divisor 3247 and the new remainder 2677, and apply the division lemma to get

3247 = 2677 x 1 + 570

We consider the new divisor 2677 and the new remainder 570,and apply the division lemma to get

2677 = 570 x 4 + 397

We consider the new divisor 570 and the new remainder 397,and apply the division lemma to get

570 = 397 x 1 + 173

We consider the new divisor 397 and the new remainder 173,and apply the division lemma to get

397 = 173 x 2 + 51

We consider the new divisor 173 and the new remainder 51,and apply the division lemma to get

173 = 51 x 3 + 20

We consider the new divisor 51 and the new remainder 20,and apply the division lemma to get

51 = 20 x 2 + 11

We consider the new divisor 20 and the new remainder 11,and apply the division lemma to get

20 = 11 x 1 + 9

We consider the new divisor 11 and the new remainder 9,and apply the division lemma to get

11 = 9 x 1 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5924 and 9171 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(11,9) = HCF(20,11) = HCF(51,20) = HCF(173,51) = HCF(397,173) = HCF(570,397) = HCF(2677,570) = HCF(3247,2677) = HCF(5924,3247) = HCF(9171,5924) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5924, 9171 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5924, 9171?

Answer: HCF of 5924, 9171 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5924, 9171 using Euclid's Algorithm?

Answer: For arbitrary numbers 5924, 9171 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.