Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 593, 386, 533 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 593, 386, 533 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 593, 386, 533 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 593, 386, 533 is 1.
HCF(593, 386, 533) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 593, 386, 533 is 1.
Step 1: Since 593 > 386, we apply the division lemma to 593 and 386, to get
593 = 386 x 1 + 207
Step 2: Since the reminder 386 ≠ 0, we apply division lemma to 207 and 386, to get
386 = 207 x 1 + 179
Step 3: We consider the new divisor 207 and the new remainder 179, and apply the division lemma to get
207 = 179 x 1 + 28
We consider the new divisor 179 and the new remainder 28,and apply the division lemma to get
179 = 28 x 6 + 11
We consider the new divisor 28 and the new remainder 11,and apply the division lemma to get
28 = 11 x 2 + 6
We consider the new divisor 11 and the new remainder 6,and apply the division lemma to get
11 = 6 x 1 + 5
We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get
6 = 5 x 1 + 1
We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get
5 = 1 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 593 and 386 is 1
Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(11,6) = HCF(28,11) = HCF(179,28) = HCF(207,179) = HCF(386,207) = HCF(593,386) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 533 > 1, we apply the division lemma to 533 and 1, to get
533 = 1 x 533 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 533 is 1
Notice that 1 = HCF(533,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 593, 386, 533?
Answer: HCF of 593, 386, 533 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 593, 386, 533 using Euclid's Algorithm?
Answer: For arbitrary numbers 593, 386, 533 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.