Highest Common Factor of 595, 7094, 1705 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 595, 7094, 1705 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 595, 7094, 1705 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 595, 7094, 1705 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 595, 7094, 1705 is 1.

HCF(595, 7094, 1705) = 1

HCF of 595, 7094, 1705 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 595, 7094, 1705 is 1.

Highest Common Factor of 595,7094,1705 using Euclid's algorithm

Highest Common Factor of 595,7094,1705 is 1

Step 1: Since 7094 > 595, we apply the division lemma to 7094 and 595, to get

7094 = 595 x 11 + 549

Step 2: Since the reminder 595 ≠ 0, we apply division lemma to 549 and 595, to get

595 = 549 x 1 + 46

Step 3: We consider the new divisor 549 and the new remainder 46, and apply the division lemma to get

549 = 46 x 11 + 43

We consider the new divisor 46 and the new remainder 43,and apply the division lemma to get

46 = 43 x 1 + 3

We consider the new divisor 43 and the new remainder 3,and apply the division lemma to get

43 = 3 x 14 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 595 and 7094 is 1

Notice that 1 = HCF(3,1) = HCF(43,3) = HCF(46,43) = HCF(549,46) = HCF(595,549) = HCF(7094,595) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 1705 > 1, we apply the division lemma to 1705 and 1, to get

1705 = 1 x 1705 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 1705 is 1

Notice that 1 = HCF(1705,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 595, 7094, 1705 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 595, 7094, 1705?

Answer: HCF of 595, 7094, 1705 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 595, 7094, 1705 using Euclid's Algorithm?

Answer: For arbitrary numbers 595, 7094, 1705 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.