Highest Common Factor of 595, 956 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 595, 956 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 595, 956 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 595, 956 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 595, 956 is 1.

HCF(595, 956) = 1

HCF of 595, 956 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 595, 956 is 1.

Highest Common Factor of 595,956 using Euclid's algorithm

Highest Common Factor of 595,956 is 1

Step 1: Since 956 > 595, we apply the division lemma to 956 and 595, to get

956 = 595 x 1 + 361

Step 2: Since the reminder 595 ≠ 0, we apply division lemma to 361 and 595, to get

595 = 361 x 1 + 234

Step 3: We consider the new divisor 361 and the new remainder 234, and apply the division lemma to get

361 = 234 x 1 + 127

We consider the new divisor 234 and the new remainder 127,and apply the division lemma to get

234 = 127 x 1 + 107

We consider the new divisor 127 and the new remainder 107,and apply the division lemma to get

127 = 107 x 1 + 20

We consider the new divisor 107 and the new remainder 20,and apply the division lemma to get

107 = 20 x 5 + 7

We consider the new divisor 20 and the new remainder 7,and apply the division lemma to get

20 = 7 x 2 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 595 and 956 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(20,7) = HCF(107,20) = HCF(127,107) = HCF(234,127) = HCF(361,234) = HCF(595,361) = HCF(956,595) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 595, 956 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 595, 956?

Answer: HCF of 595, 956 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 595, 956 using Euclid's Algorithm?

Answer: For arbitrary numbers 595, 956 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.