Highest Common Factor of 596, 3453, 3637 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 596, 3453, 3637 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 596, 3453, 3637 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 596, 3453, 3637 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 596, 3453, 3637 is 1.

HCF(596, 3453, 3637) = 1

HCF of 596, 3453, 3637 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 596, 3453, 3637 is 1.

Highest Common Factor of 596,3453,3637 using Euclid's algorithm

Highest Common Factor of 596,3453,3637 is 1

Step 1: Since 3453 > 596, we apply the division lemma to 3453 and 596, to get

3453 = 596 x 5 + 473

Step 2: Since the reminder 596 ≠ 0, we apply division lemma to 473 and 596, to get

596 = 473 x 1 + 123

Step 3: We consider the new divisor 473 and the new remainder 123, and apply the division lemma to get

473 = 123 x 3 + 104

We consider the new divisor 123 and the new remainder 104,and apply the division lemma to get

123 = 104 x 1 + 19

We consider the new divisor 104 and the new remainder 19,and apply the division lemma to get

104 = 19 x 5 + 9

We consider the new divisor 19 and the new remainder 9,and apply the division lemma to get

19 = 9 x 2 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 596 and 3453 is 1

Notice that 1 = HCF(9,1) = HCF(19,9) = HCF(104,19) = HCF(123,104) = HCF(473,123) = HCF(596,473) = HCF(3453,596) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 3637 > 1, we apply the division lemma to 3637 and 1, to get

3637 = 1 x 3637 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 3637 is 1

Notice that 1 = HCF(3637,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 596, 3453, 3637 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 596, 3453, 3637?

Answer: HCF of 596, 3453, 3637 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 596, 3453, 3637 using Euclid's Algorithm?

Answer: For arbitrary numbers 596, 3453, 3637 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.