Highest Common Factor of 596, 995, 512, 545 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 596, 995, 512, 545 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 596, 995, 512, 545 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 596, 995, 512, 545 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 596, 995, 512, 545 is 1.

HCF(596, 995, 512, 545) = 1

HCF of 596, 995, 512, 545 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 596, 995, 512, 545 is 1.

Highest Common Factor of 596,995,512,545 using Euclid's algorithm

Highest Common Factor of 596,995,512,545 is 1

Step 1: Since 995 > 596, we apply the division lemma to 995 and 596, to get

995 = 596 x 1 + 399

Step 2: Since the reminder 596 ≠ 0, we apply division lemma to 399 and 596, to get

596 = 399 x 1 + 197

Step 3: We consider the new divisor 399 and the new remainder 197, and apply the division lemma to get

399 = 197 x 2 + 5

We consider the new divisor 197 and the new remainder 5,and apply the division lemma to get

197 = 5 x 39 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 596 and 995 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(197,5) = HCF(399,197) = HCF(596,399) = HCF(995,596) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 512 > 1, we apply the division lemma to 512 and 1, to get

512 = 1 x 512 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 512 is 1

Notice that 1 = HCF(512,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 545 > 1, we apply the division lemma to 545 and 1, to get

545 = 1 x 545 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 545 is 1

Notice that 1 = HCF(545,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 596, 995, 512, 545 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 596, 995, 512, 545?

Answer: HCF of 596, 995, 512, 545 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 596, 995, 512, 545 using Euclid's Algorithm?

Answer: For arbitrary numbers 596, 995, 512, 545 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.