Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 597, 958 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 597, 958 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 597, 958 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 597, 958 is 1.
HCF(597, 958) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 597, 958 is 1.
Step 1: Since 958 > 597, we apply the division lemma to 958 and 597, to get
958 = 597 x 1 + 361
Step 2: Since the reminder 597 ≠ 0, we apply division lemma to 361 and 597, to get
597 = 361 x 1 + 236
Step 3: We consider the new divisor 361 and the new remainder 236, and apply the division lemma to get
361 = 236 x 1 + 125
We consider the new divisor 236 and the new remainder 125,and apply the division lemma to get
236 = 125 x 1 + 111
We consider the new divisor 125 and the new remainder 111,and apply the division lemma to get
125 = 111 x 1 + 14
We consider the new divisor 111 and the new remainder 14,and apply the division lemma to get
111 = 14 x 7 + 13
We consider the new divisor 14 and the new remainder 13,and apply the division lemma to get
14 = 13 x 1 + 1
We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get
13 = 1 x 13 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 597 and 958 is 1
Notice that 1 = HCF(13,1) = HCF(14,13) = HCF(111,14) = HCF(125,111) = HCF(236,125) = HCF(361,236) = HCF(597,361) = HCF(958,597) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 597, 958?
Answer: HCF of 597, 958 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 597, 958 using Euclid's Algorithm?
Answer: For arbitrary numbers 597, 958 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.