Highest Common Factor of 598, 449, 552, 732 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 598, 449, 552, 732 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 598, 449, 552, 732 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 598, 449, 552, 732 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 598, 449, 552, 732 is 1.

HCF(598, 449, 552, 732) = 1

HCF of 598, 449, 552, 732 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 598, 449, 552, 732 is 1.

Highest Common Factor of 598,449,552,732 using Euclid's algorithm

Highest Common Factor of 598,449,552,732 is 1

Step 1: Since 598 > 449, we apply the division lemma to 598 and 449, to get

598 = 449 x 1 + 149

Step 2: Since the reminder 449 ≠ 0, we apply division lemma to 149 and 449, to get

449 = 149 x 3 + 2

Step 3: We consider the new divisor 149 and the new remainder 2, and apply the division lemma to get

149 = 2 x 74 + 1

We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 598 and 449 is 1

Notice that 1 = HCF(2,1) = HCF(149,2) = HCF(449,149) = HCF(598,449) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 552 > 1, we apply the division lemma to 552 and 1, to get

552 = 1 x 552 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 552 is 1

Notice that 1 = HCF(552,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 732 > 1, we apply the division lemma to 732 and 1, to get

732 = 1 x 732 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 732 is 1

Notice that 1 = HCF(732,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 598, 449, 552, 732 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 598, 449, 552, 732?

Answer: HCF of 598, 449, 552, 732 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 598, 449, 552, 732 using Euclid's Algorithm?

Answer: For arbitrary numbers 598, 449, 552, 732 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.