Highest Common Factor of 60, 99, 51, 595 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 60, 99, 51, 595 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 60, 99, 51, 595 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 60, 99, 51, 595 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 60, 99, 51, 595 is 1.

HCF(60, 99, 51, 595) = 1

HCF of 60, 99, 51, 595 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 60, 99, 51, 595 is 1.

Highest Common Factor of 60,99,51,595 using Euclid's algorithm

Highest Common Factor of 60,99,51,595 is 1

Step 1: Since 99 > 60, we apply the division lemma to 99 and 60, to get

99 = 60 x 1 + 39

Step 2: Since the reminder 60 ≠ 0, we apply division lemma to 39 and 60, to get

60 = 39 x 1 + 21

Step 3: We consider the new divisor 39 and the new remainder 21, and apply the division lemma to get

39 = 21 x 1 + 18

We consider the new divisor 21 and the new remainder 18,and apply the division lemma to get

21 = 18 x 1 + 3

We consider the new divisor 18 and the new remainder 3,and apply the division lemma to get

18 = 3 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 60 and 99 is 3

Notice that 3 = HCF(18,3) = HCF(21,18) = HCF(39,21) = HCF(60,39) = HCF(99,60) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 51 > 3, we apply the division lemma to 51 and 3, to get

51 = 3 x 17 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3 and 51 is 3

Notice that 3 = HCF(51,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 595 > 3, we apply the division lemma to 595 and 3, to get

595 = 3 x 198 + 1

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 595 is 1

Notice that 1 = HCF(3,1) = HCF(595,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 60, 99, 51, 595 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 60, 99, 51, 595?

Answer: HCF of 60, 99, 51, 595 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 60, 99, 51, 595 using Euclid's Algorithm?

Answer: For arbitrary numbers 60, 99, 51, 595 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.