Highest Common Factor of 600, 546, 640, 87 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 600, 546, 640, 87 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 600, 546, 640, 87 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 600, 546, 640, 87 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 600, 546, 640, 87 is 1.

HCF(600, 546, 640, 87) = 1

HCF of 600, 546, 640, 87 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 600, 546, 640, 87 is 1.

Highest Common Factor of 600,546,640,87 using Euclid's algorithm

Highest Common Factor of 600,546,640,87 is 1

Step 1: Since 600 > 546, we apply the division lemma to 600 and 546, to get

600 = 546 x 1 + 54

Step 2: Since the reminder 546 ≠ 0, we apply division lemma to 54 and 546, to get

546 = 54 x 10 + 6

Step 3: We consider the new divisor 54 and the new remainder 6, and apply the division lemma to get

54 = 6 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 6, the HCF of 600 and 546 is 6

Notice that 6 = HCF(54,6) = HCF(546,54) = HCF(600,546) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 640 > 6, we apply the division lemma to 640 and 6, to get

640 = 6 x 106 + 4

Step 2: Since the reminder 6 ≠ 0, we apply division lemma to 4 and 6, to get

6 = 4 x 1 + 2

Step 3: We consider the new divisor 4 and the new remainder 2, and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 6 and 640 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(640,6) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 87 > 2, we apply the division lemma to 87 and 2, to get

87 = 2 x 43 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 87 is 1

Notice that 1 = HCF(2,1) = HCF(87,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 600, 546, 640, 87 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 600, 546, 640, 87?

Answer: HCF of 600, 546, 640, 87 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 600, 546, 640, 87 using Euclid's Algorithm?

Answer: For arbitrary numbers 600, 546, 640, 87 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.