Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 601, 352, 321 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 601, 352, 321 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 601, 352, 321 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 601, 352, 321 is 1.
HCF(601, 352, 321) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 601, 352, 321 is 1.
Step 1: Since 601 > 352, we apply the division lemma to 601 and 352, to get
601 = 352 x 1 + 249
Step 2: Since the reminder 352 ≠ 0, we apply division lemma to 249 and 352, to get
352 = 249 x 1 + 103
Step 3: We consider the new divisor 249 and the new remainder 103, and apply the division lemma to get
249 = 103 x 2 + 43
We consider the new divisor 103 and the new remainder 43,and apply the division lemma to get
103 = 43 x 2 + 17
We consider the new divisor 43 and the new remainder 17,and apply the division lemma to get
43 = 17 x 2 + 9
We consider the new divisor 17 and the new remainder 9,and apply the division lemma to get
17 = 9 x 1 + 8
We consider the new divisor 9 and the new remainder 8,and apply the division lemma to get
9 = 8 x 1 + 1
We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get
8 = 1 x 8 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 601 and 352 is 1
Notice that 1 = HCF(8,1) = HCF(9,8) = HCF(17,9) = HCF(43,17) = HCF(103,43) = HCF(249,103) = HCF(352,249) = HCF(601,352) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 321 > 1, we apply the division lemma to 321 and 1, to get
321 = 1 x 321 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 321 is 1
Notice that 1 = HCF(321,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 601, 352, 321?
Answer: HCF of 601, 352, 321 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 601, 352, 321 using Euclid's Algorithm?
Answer: For arbitrary numbers 601, 352, 321 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.