Highest Common Factor of 602, 998, 364 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 602, 998, 364 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 602, 998, 364 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 602, 998, 364 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 602, 998, 364 is 2.

HCF(602, 998, 364) = 2

HCF of 602, 998, 364 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 602, 998, 364 is 2.

Highest Common Factor of 602,998,364 using Euclid's algorithm

Highest Common Factor of 602,998,364 is 2

Step 1: Since 998 > 602, we apply the division lemma to 998 and 602, to get

998 = 602 x 1 + 396

Step 2: Since the reminder 602 ≠ 0, we apply division lemma to 396 and 602, to get

602 = 396 x 1 + 206

Step 3: We consider the new divisor 396 and the new remainder 206, and apply the division lemma to get

396 = 206 x 1 + 190

We consider the new divisor 206 and the new remainder 190,and apply the division lemma to get

206 = 190 x 1 + 16

We consider the new divisor 190 and the new remainder 16,and apply the division lemma to get

190 = 16 x 11 + 14

We consider the new divisor 16 and the new remainder 14,and apply the division lemma to get

16 = 14 x 1 + 2

We consider the new divisor 14 and the new remainder 2,and apply the division lemma to get

14 = 2 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 602 and 998 is 2

Notice that 2 = HCF(14,2) = HCF(16,14) = HCF(190,16) = HCF(206,190) = HCF(396,206) = HCF(602,396) = HCF(998,602) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 364 > 2, we apply the division lemma to 364 and 2, to get

364 = 2 x 182 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 364 is 2

Notice that 2 = HCF(364,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 602, 998, 364 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 602, 998, 364?

Answer: HCF of 602, 998, 364 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 602, 998, 364 using Euclid's Algorithm?

Answer: For arbitrary numbers 602, 998, 364 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.