Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 605, 372, 59 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 605, 372, 59 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 605, 372, 59 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 605, 372, 59 is 1.
HCF(605, 372, 59) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 605, 372, 59 is 1.
Step 1: Since 605 > 372, we apply the division lemma to 605 and 372, to get
605 = 372 x 1 + 233
Step 2: Since the reminder 372 ≠ 0, we apply division lemma to 233 and 372, to get
372 = 233 x 1 + 139
Step 3: We consider the new divisor 233 and the new remainder 139, and apply the division lemma to get
233 = 139 x 1 + 94
We consider the new divisor 139 and the new remainder 94,and apply the division lemma to get
139 = 94 x 1 + 45
We consider the new divisor 94 and the new remainder 45,and apply the division lemma to get
94 = 45 x 2 + 4
We consider the new divisor 45 and the new remainder 4,and apply the division lemma to get
45 = 4 x 11 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 605 and 372 is 1
Notice that 1 = HCF(4,1) = HCF(45,4) = HCF(94,45) = HCF(139,94) = HCF(233,139) = HCF(372,233) = HCF(605,372) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 59 > 1, we apply the division lemma to 59 and 1, to get
59 = 1 x 59 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 59 is 1
Notice that 1 = HCF(59,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 605, 372, 59?
Answer: HCF of 605, 372, 59 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 605, 372, 59 using Euclid's Algorithm?
Answer: For arbitrary numbers 605, 372, 59 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.