Highest Common Factor of 608, 995, 513, 518 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 608, 995, 513, 518 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 608, 995, 513, 518 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 608, 995, 513, 518 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 608, 995, 513, 518 is 1.

HCF(608, 995, 513, 518) = 1

HCF of 608, 995, 513, 518 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 608, 995, 513, 518 is 1.

Highest Common Factor of 608,995,513,518 using Euclid's algorithm

Highest Common Factor of 608,995,513,518 is 1

Step 1: Since 995 > 608, we apply the division lemma to 995 and 608, to get

995 = 608 x 1 + 387

Step 2: Since the reminder 608 ≠ 0, we apply division lemma to 387 and 608, to get

608 = 387 x 1 + 221

Step 3: We consider the new divisor 387 and the new remainder 221, and apply the division lemma to get

387 = 221 x 1 + 166

We consider the new divisor 221 and the new remainder 166,and apply the division lemma to get

221 = 166 x 1 + 55

We consider the new divisor 166 and the new remainder 55,and apply the division lemma to get

166 = 55 x 3 + 1

We consider the new divisor 55 and the new remainder 1,and apply the division lemma to get

55 = 1 x 55 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 608 and 995 is 1

Notice that 1 = HCF(55,1) = HCF(166,55) = HCF(221,166) = HCF(387,221) = HCF(608,387) = HCF(995,608) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 513 > 1, we apply the division lemma to 513 and 1, to get

513 = 1 x 513 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 513 is 1

Notice that 1 = HCF(513,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 518 > 1, we apply the division lemma to 518 and 1, to get

518 = 1 x 518 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 518 is 1

Notice that 1 = HCF(518,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 608, 995, 513, 518 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 608, 995, 513, 518?

Answer: HCF of 608, 995, 513, 518 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 608, 995, 513, 518 using Euclid's Algorithm?

Answer: For arbitrary numbers 608, 995, 513, 518 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.