Highest Common Factor of 609, 5411, 4609 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 609, 5411, 4609 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 609, 5411, 4609 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 609, 5411, 4609 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 609, 5411, 4609 is 1.

HCF(609, 5411, 4609) = 1

HCF of 609, 5411, 4609 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 609, 5411, 4609 is 1.

Highest Common Factor of 609,5411,4609 using Euclid's algorithm

Highest Common Factor of 609,5411,4609 is 1

Step 1: Since 5411 > 609, we apply the division lemma to 5411 and 609, to get

5411 = 609 x 8 + 539

Step 2: Since the reminder 609 ≠ 0, we apply division lemma to 539 and 609, to get

609 = 539 x 1 + 70

Step 3: We consider the new divisor 539 and the new remainder 70, and apply the division lemma to get

539 = 70 x 7 + 49

We consider the new divisor 70 and the new remainder 49,and apply the division lemma to get

70 = 49 x 1 + 21

We consider the new divisor 49 and the new remainder 21,and apply the division lemma to get

49 = 21 x 2 + 7

We consider the new divisor 21 and the new remainder 7,and apply the division lemma to get

21 = 7 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 609 and 5411 is 7

Notice that 7 = HCF(21,7) = HCF(49,21) = HCF(70,49) = HCF(539,70) = HCF(609,539) = HCF(5411,609) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 4609 > 7, we apply the division lemma to 4609 and 7, to get

4609 = 7 x 658 + 3

Step 2: Since the reminder 7 ≠ 0, we apply division lemma to 3 and 7, to get

7 = 3 x 2 + 1

Step 3: We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7 and 4609 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(4609,7) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 609, 5411, 4609 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 609, 5411, 4609?

Answer: HCF of 609, 5411, 4609 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 609, 5411, 4609 using Euclid's Algorithm?

Answer: For arbitrary numbers 609, 5411, 4609 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.