Highest Common Factor of 610, 669 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 610, 669 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 610, 669 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 610, 669 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 610, 669 is 1.

HCF(610, 669) = 1

HCF of 610, 669 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 610, 669 is 1.

Highest Common Factor of 610,669 using Euclid's algorithm

Highest Common Factor of 610,669 is 1

Step 1: Since 669 > 610, we apply the division lemma to 669 and 610, to get

669 = 610 x 1 + 59

Step 2: Since the reminder 610 ≠ 0, we apply division lemma to 59 and 610, to get

610 = 59 x 10 + 20

Step 3: We consider the new divisor 59 and the new remainder 20, and apply the division lemma to get

59 = 20 x 2 + 19

We consider the new divisor 20 and the new remainder 19,and apply the division lemma to get

20 = 19 x 1 + 1

We consider the new divisor 19 and the new remainder 1,and apply the division lemma to get

19 = 1 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 610 and 669 is 1

Notice that 1 = HCF(19,1) = HCF(20,19) = HCF(59,20) = HCF(610,59) = HCF(669,610) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 610, 669 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 610, 669?

Answer: HCF of 610, 669 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 610, 669 using Euclid's Algorithm?

Answer: For arbitrary numbers 610, 669 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.