Highest Common Factor of 610, 854, 464, 46 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 610, 854, 464, 46 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 610, 854, 464, 46 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 610, 854, 464, 46 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 610, 854, 464, 46 is 2.

HCF(610, 854, 464, 46) = 2

HCF of 610, 854, 464, 46 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 610, 854, 464, 46 is 2.

Highest Common Factor of 610,854,464,46 using Euclid's algorithm

Highest Common Factor of 610,854,464,46 is 2

Step 1: Since 854 > 610, we apply the division lemma to 854 and 610, to get

854 = 610 x 1 + 244

Step 2: Since the reminder 610 ≠ 0, we apply division lemma to 244 and 610, to get

610 = 244 x 2 + 122

Step 3: We consider the new divisor 244 and the new remainder 122, and apply the division lemma to get

244 = 122 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 122, the HCF of 610 and 854 is 122

Notice that 122 = HCF(244,122) = HCF(610,244) = HCF(854,610) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 464 > 122, we apply the division lemma to 464 and 122, to get

464 = 122 x 3 + 98

Step 2: Since the reminder 122 ≠ 0, we apply division lemma to 98 and 122, to get

122 = 98 x 1 + 24

Step 3: We consider the new divisor 98 and the new remainder 24, and apply the division lemma to get

98 = 24 x 4 + 2

We consider the new divisor 24 and the new remainder 2, and apply the division lemma to get

24 = 2 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 122 and 464 is 2

Notice that 2 = HCF(24,2) = HCF(98,24) = HCF(122,98) = HCF(464,122) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 46 > 2, we apply the division lemma to 46 and 2, to get

46 = 2 x 23 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 46 is 2

Notice that 2 = HCF(46,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 610, 854, 464, 46 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 610, 854, 464, 46?

Answer: HCF of 610, 854, 464, 46 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 610, 854, 464, 46 using Euclid's Algorithm?

Answer: For arbitrary numbers 610, 854, 464, 46 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.