Highest Common Factor of 611, 956, 37 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 611, 956, 37 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 611, 956, 37 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 611, 956, 37 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 611, 956, 37 is 1.

HCF(611, 956, 37) = 1

HCF of 611, 956, 37 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 611, 956, 37 is 1.

Highest Common Factor of 611,956,37 using Euclid's algorithm

Highest Common Factor of 611,956,37 is 1

Step 1: Since 956 > 611, we apply the division lemma to 956 and 611, to get

956 = 611 x 1 + 345

Step 2: Since the reminder 611 ≠ 0, we apply division lemma to 345 and 611, to get

611 = 345 x 1 + 266

Step 3: We consider the new divisor 345 and the new remainder 266, and apply the division lemma to get

345 = 266 x 1 + 79

We consider the new divisor 266 and the new remainder 79,and apply the division lemma to get

266 = 79 x 3 + 29

We consider the new divisor 79 and the new remainder 29,and apply the division lemma to get

79 = 29 x 2 + 21

We consider the new divisor 29 and the new remainder 21,and apply the division lemma to get

29 = 21 x 1 + 8

We consider the new divisor 21 and the new remainder 8,and apply the division lemma to get

21 = 8 x 2 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 611 and 956 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(21,8) = HCF(29,21) = HCF(79,29) = HCF(266,79) = HCF(345,266) = HCF(611,345) = HCF(956,611) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 37 > 1, we apply the division lemma to 37 and 1, to get

37 = 1 x 37 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 37 is 1

Notice that 1 = HCF(37,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 611, 956, 37 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 611, 956, 37?

Answer: HCF of 611, 956, 37 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 611, 956, 37 using Euclid's Algorithm?

Answer: For arbitrary numbers 611, 956, 37 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.