Highest Common Factor of 614, 873, 83, 776 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 614, 873, 83, 776 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 614, 873, 83, 776 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 614, 873, 83, 776 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 614, 873, 83, 776 is 1.

HCF(614, 873, 83, 776) = 1

HCF of 614, 873, 83, 776 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 614, 873, 83, 776 is 1.

Highest Common Factor of 614,873,83,776 using Euclid's algorithm

Highest Common Factor of 614,873,83,776 is 1

Step 1: Since 873 > 614, we apply the division lemma to 873 and 614, to get

873 = 614 x 1 + 259

Step 2: Since the reminder 614 ≠ 0, we apply division lemma to 259 and 614, to get

614 = 259 x 2 + 96

Step 3: We consider the new divisor 259 and the new remainder 96, and apply the division lemma to get

259 = 96 x 2 + 67

We consider the new divisor 96 and the new remainder 67,and apply the division lemma to get

96 = 67 x 1 + 29

We consider the new divisor 67 and the new remainder 29,and apply the division lemma to get

67 = 29 x 2 + 9

We consider the new divisor 29 and the new remainder 9,and apply the division lemma to get

29 = 9 x 3 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 614 and 873 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(29,9) = HCF(67,29) = HCF(96,67) = HCF(259,96) = HCF(614,259) = HCF(873,614) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 83 > 1, we apply the division lemma to 83 and 1, to get

83 = 1 x 83 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 83 is 1

Notice that 1 = HCF(83,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 776 > 1, we apply the division lemma to 776 and 1, to get

776 = 1 x 776 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 776 is 1

Notice that 1 = HCF(776,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 614, 873, 83, 776 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 614, 873, 83, 776?

Answer: HCF of 614, 873, 83, 776 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 614, 873, 83, 776 using Euclid's Algorithm?

Answer: For arbitrary numbers 614, 873, 83, 776 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.