Highest Common Factor of 615, 3438 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 615, 3438 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 615, 3438 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 615, 3438 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 615, 3438 is 3.

HCF(615, 3438) = 3

HCF of 615, 3438 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 615, 3438 is 3.

Highest Common Factor of 615,3438 using Euclid's algorithm

Highest Common Factor of 615,3438 is 3

Step 1: Since 3438 > 615, we apply the division lemma to 3438 and 615, to get

3438 = 615 x 5 + 363

Step 2: Since the reminder 615 ≠ 0, we apply division lemma to 363 and 615, to get

615 = 363 x 1 + 252

Step 3: We consider the new divisor 363 and the new remainder 252, and apply the division lemma to get

363 = 252 x 1 + 111

We consider the new divisor 252 and the new remainder 111,and apply the division lemma to get

252 = 111 x 2 + 30

We consider the new divisor 111 and the new remainder 30,and apply the division lemma to get

111 = 30 x 3 + 21

We consider the new divisor 30 and the new remainder 21,and apply the division lemma to get

30 = 21 x 1 + 9

We consider the new divisor 21 and the new remainder 9,and apply the division lemma to get

21 = 9 x 2 + 3

We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get

9 = 3 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 615 and 3438 is 3

Notice that 3 = HCF(9,3) = HCF(21,9) = HCF(30,21) = HCF(111,30) = HCF(252,111) = HCF(363,252) = HCF(615,363) = HCF(3438,615) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 615, 3438 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 615, 3438?

Answer: HCF of 615, 3438 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 615, 3438 using Euclid's Algorithm?

Answer: For arbitrary numbers 615, 3438 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.