Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 615, 442 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 615, 442 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 615, 442 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 615, 442 is 1.
HCF(615, 442) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 615, 442 is 1.
Step 1: Since 615 > 442, we apply the division lemma to 615 and 442, to get
615 = 442 x 1 + 173
Step 2: Since the reminder 442 ≠ 0, we apply division lemma to 173 and 442, to get
442 = 173 x 2 + 96
Step 3: We consider the new divisor 173 and the new remainder 96, and apply the division lemma to get
173 = 96 x 1 + 77
We consider the new divisor 96 and the new remainder 77,and apply the division lemma to get
96 = 77 x 1 + 19
We consider the new divisor 77 and the new remainder 19,and apply the division lemma to get
77 = 19 x 4 + 1
We consider the new divisor 19 and the new remainder 1,and apply the division lemma to get
19 = 1 x 19 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 615 and 442 is 1
Notice that 1 = HCF(19,1) = HCF(77,19) = HCF(96,77) = HCF(173,96) = HCF(442,173) = HCF(615,442) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 615, 442?
Answer: HCF of 615, 442 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 615, 442 using Euclid's Algorithm?
Answer: For arbitrary numbers 615, 442 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.