Highest Common Factor of 615, 986, 643 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 615, 986, 643 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 615, 986, 643 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 615, 986, 643 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 615, 986, 643 is 1.

HCF(615, 986, 643) = 1

HCF of 615, 986, 643 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 615, 986, 643 is 1.

Highest Common Factor of 615,986,643 using Euclid's algorithm

Highest Common Factor of 615,986,643 is 1

Step 1: Since 986 > 615, we apply the division lemma to 986 and 615, to get

986 = 615 x 1 + 371

Step 2: Since the reminder 615 ≠ 0, we apply division lemma to 371 and 615, to get

615 = 371 x 1 + 244

Step 3: We consider the new divisor 371 and the new remainder 244, and apply the division lemma to get

371 = 244 x 1 + 127

We consider the new divisor 244 and the new remainder 127,and apply the division lemma to get

244 = 127 x 1 + 117

We consider the new divisor 127 and the new remainder 117,and apply the division lemma to get

127 = 117 x 1 + 10

We consider the new divisor 117 and the new remainder 10,and apply the division lemma to get

117 = 10 x 11 + 7

We consider the new divisor 10 and the new remainder 7,and apply the division lemma to get

10 = 7 x 1 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 615 and 986 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(10,7) = HCF(117,10) = HCF(127,117) = HCF(244,127) = HCF(371,244) = HCF(615,371) = HCF(986,615) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 643 > 1, we apply the division lemma to 643 and 1, to get

643 = 1 x 643 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 643 is 1

Notice that 1 = HCF(643,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 615, 986, 643 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 615, 986, 643?

Answer: HCF of 615, 986, 643 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 615, 986, 643 using Euclid's Algorithm?

Answer: For arbitrary numbers 615, 986, 643 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.