Highest Common Factor of 616, 147, 703, 40 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 616, 147, 703, 40 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 616, 147, 703, 40 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 616, 147, 703, 40 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 616, 147, 703, 40 is 1.

HCF(616, 147, 703, 40) = 1

HCF of 616, 147, 703, 40 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 616, 147, 703, 40 is 1.

Highest Common Factor of 616,147,703,40 using Euclid's algorithm

Highest Common Factor of 616,147,703,40 is 1

Step 1: Since 616 > 147, we apply the division lemma to 616 and 147, to get

616 = 147 x 4 + 28

Step 2: Since the reminder 147 ≠ 0, we apply division lemma to 28 and 147, to get

147 = 28 x 5 + 7

Step 3: We consider the new divisor 28 and the new remainder 7, and apply the division lemma to get

28 = 7 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 616 and 147 is 7

Notice that 7 = HCF(28,7) = HCF(147,28) = HCF(616,147) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 703 > 7, we apply the division lemma to 703 and 7, to get

703 = 7 x 100 + 3

Step 2: Since the reminder 7 ≠ 0, we apply division lemma to 3 and 7, to get

7 = 3 x 2 + 1

Step 3: We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7 and 703 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(703,7) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 40 > 1, we apply the division lemma to 40 and 1, to get

40 = 1 x 40 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 40 is 1

Notice that 1 = HCF(40,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 616, 147, 703, 40 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 616, 147, 703, 40?

Answer: HCF of 616, 147, 703, 40 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 616, 147, 703, 40 using Euclid's Algorithm?

Answer: For arbitrary numbers 616, 147, 703, 40 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.